Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii

نویسندگان

  • Lei Yang
  • Jun Chen
  • Shan Qin
  • Min Zeng
  • Yongguang Jiang
  • Lang Hu
  • Peng Xiao
  • Wenlong Hao
  • Zhangli Hu
  • Anping Lei
  • Jiangxin Wang
چکیده

Background Individual nutrient depletion is widely used to induce lipid accumulation in microalgae, which also causes cell growth inhibition and decreases the total biomass. Thus, improving the lipid accumulation without biomass loss in the nutrient deficiency cells becomes a potential cost-effective treatment for cheaper biofuels. Methods In this study, the effects of different nutritional conditions on the growth and contents of lipids in Chlamydomonas reinhardtii were compared, and the metabolic profiles under different nutritional conditions were also investigated. Results We showed that similar to other microalgae, nitrogen or phosphorus deficiency inhibited the growth of Chlamydomonas and combined nutrition deficiency reduced biomass by up to 31.7%, though lipid contents in cells (g/g dry weight [DW]) were significantly increased. The addition of sodium acetate countered this growth inhibition that resulted from nitrogen and phosphorus deficiency, with significantly increased biomass. Furthermore, the combination of 4 g/L sodium acetate supplementation with nitrogen and phosphorous deficiency increased total fatty acid yield (mg/L) by 93.0 and 150.1% compared to nutrient-depleted and normal culture conditions, respectively. Metabolite content was affected by the different nutritional conditions, especially metabolites that are involved in lipid metabolism, amino acid metabolism and metabolism of external substances. Conclusion Further research into these metabolites could shed light onto the relationship between cell growth inhibition and fatty acid accumulation in Chlamydomonas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii.

Many unicellular microalgae produce large amounts (∼20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Ch...

متن کامل

Phospholipid:Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii C W

Many unicellular microalgae produce large amounts (;20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Ch...

متن کامل

Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes

Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...

متن کامل

Growth rate assessment of high lipid producing microalga Botryococcus braunii in different culture media

The green colonial microalga, Botryococcus braunii is well known for its high lipid content and has already been proposed as a renewable energy source for various aquaculture and biotechnological applications. However, due to its slow growth rate compared with other microalgae, B. braunii has not yet been used in mass culture to produce more biomass. Therefore, in this study we tested different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018